Page 15 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha

= \$ 5,520

Maintenance cost

(a) Maintenance

[(0.5 hr/shift)/(8 hr/shift)] labor costs = \$4,800

(HRS) (\$hourly rate)

(b) Maintenace

materials

= \$4,800 1.0*(Maintenance labor costs)

Maintenance costs = \$(4,800 + 4,800)

= \$ 9,600

Disposal of

solvent

= \$9,654

ASR * Dsc

TOTAL DIRECT

ANNUAL COSTS

= (Electricity + solvent + operating + Maintenance + Disposal of solvent) Costs

= \$24,782

INDIRECT ANNUAL COSTS

= 0.60 (Operating + Maintenance) Overhead

= \$9,072

Property Tax = 1 percent of TCI

= \$2,760

Insurance = 1 percent of TCI

= \$2,760

Administrative = 2 percent of TCI

= \$5,520

= CRF * TCI Capital recovery cost factor Capital Recovery

= \$276,020*0.1627 is based on 10% interest rate

= \$44,921 and 10 years of life = 0.1627

Total Indirect

Costs

= (Overhead + Property Tax + Insurance +

Administrative + Capital Recovery)

= \$65,034

Page 16 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341
Plt. ID 097-00072
Review Engineer: Dr. T.P.Sinha

TOTAL ANNUAL COSTS

= TOTAL INDIRECT ANNUAL COSTS + TOTAL DIRECT ANNUAL COSTS = \$(65,034 + 24,782) = \$89,816

PART II

Economic Feasibility
for Control Technologies
for Modules E, F, 30 Gal-A, 30 Gal-B, & C-Wing
in Building 110

2A. Condensation Control Technology

HAP heat content: 17,000 Btu/lb Molecular weight of HAP, Mwhap: 70.87 Emission Stream Flow, Qea: 10.0 acfm Emission Stream Flow, Qe: 10.0 scfm Stream Pressure, P: 1 atm Stream Temperature, Te: 770F Air Pollution, HAP: VOC Maximum HAP conc., HAPe: 185034 ppmv Removal efficiency, RE: 96.3% 20.0 Btu/hr- ft²-0F Heat Transfer Coefficient, U: System Pressure Drop, P: 5.0 inches Temperature for 1 mm Hg vapor pressure -54.6°F Temperature for 100 mm Hg 67.9°F vapor pressure Operating hours/year, HRS: 2,560 hours Heat exchanger efficiency, HR: 95% System pressure drop, Psys: 5.0 inches Coolant pump motor efficiency, n: 0.65 Peak/Average Flow Ratio: 1.0 scfm/scfm Minimum coolant velocity: 3.0 ft/sec Coolant tube diameter: 0.375 inches 0.65 Btu/lb-0F Coolant specific heat: Coolant specific gravity, Sg: 7.48 lb/gal Coolant liquid cost, US\$cool: \$7.6/gal From vendor Auxiliary equipment cost, AEC: (Fan, ductwork, stack, & damper) \$25,000 Cost of Building, Bldg: \$0.0 Cost of site preparation, SP: \$0.0

Page 17 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Electricity cost, U\$elect:

\$0.059/kwh

From Table 4.6-7,

*358.6/340.1

\$30.o/hr

From Table 4.3-6, *358.6/340.1

Maintenance labor cost:

Operating labor cost:

\$30.0/hr

From Table 4.3-6,

*358.6/340.1

Refrigerator efficiency, Ef:

65 percent

Calculate Ppartial pressure of HAP in outlet stream:

Ppartial

= 760 * (1-0.01RE)/(1-RE *

1.0E-08 * HAPe) * HAPe * 1.0E-06

= 6.33 mmHg

Condensation Curve Xint,

Xint

 $= 1/(X_{int} + 460)$

 $= 0.00247 (1/^{0}R)$

Condensation curve slope,

 $= -(1/(T_{con 100mm Hg} + 460)) + Xint/2$

= 0.00029 0 R mm Hg

Calculate T_{con}

= $1/[(X_{int} - CSI*LOG(P_{vapor})) - 460]$

 $(-25.04 \, ^{0}\text{F}) = -13.1 \, ^{0}\text{F}$

Composition of Coolant:

DOWTHERM

IF T_{con} >60, WATER

IF 45 < Tcon > 60, CHILLED WATER

IF -30 < T_{con} > 45, DOWTHERM

IF Tcon < -30, FREON.

Moles HAP in

= Qe/392 * HAPe * 1.0E-06

inlet emission stream / min,

HAPem

= 0.00472 lb-moles/min

Page 18 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Moles HAP in outlet emission stream/min,

= Qe/392 * (1- HAPe * 1.0E-06) * P_{vapor} / (Pe-P_{vapor})

HAPem

= 0.00017 lb-moles/min

Moles HAP condensed

/min, HAP_{con} = HAP_{em} - HAP_{om}

= 0.00455 lb-moles/min

Heat of

vaporization

at Tcon, dH

= 709 Btu/lb-mole

HAP avg, spec. heat for temp Tcon to Te,

= $10.84 \text{ Btu/ lb-mole-}^{\circ}\text{F}$ Cphap

Enthalpy change

of condensed HAP = HAP_{con} [dH + CP_{hap} *(Te - Tcon)]

= 7.66 Btu

Enthalpy change

= [(Qe/392) - HAP_{em}] CP_{air} (Te - T_{con})] of air, Hnoncond

= 13.20 Btu

Condenser heat

load = 1.1 * 60 * $(H_{con} + H_{noncon})$

= 1377 Btu/hr

Coolant input temperature,

T_{cooli}, $= T_{con} - 15$ $= -28.1^{\circ} F$

Coolant output temperature,

 $T_{\rm coolo}$ $= T_{cooli} + 25$ = -3.1°F

Log mean temperature

difference, Dt_{lm} = $(Te - T_{coolo} - 15)/LN ((Te - T_{coolo})/15)$ = $38.9^{0}F$

Page 19 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha

Area of condenser,

= H_{load} * (PkFlow/AvgFlow) / (U*DTlm)

 $= 1.77 \text{ ft}^2$

Average specific heat of coolant,

Cpcoolant

 $= 0.65 \text{ Btu/lb}^{0}\text{F}$

Coolant flow

rate, Q_{cool}

= MAX(H_{load} /($CP_{coolant}$ (T_{coolo} - T_{cooli}), F_{min} *

* $Td^2 *D_{ens} * 7.48 gal/ft^3 * 3 * 3600 sec/hr)$

= 590 lb/hr

Total coolant

required, Qctot

= 200 gallons (Estimated)

Refrigeration

capacity, Ref

= H_{load} * (PkFlow/AvgFlow)/12000

= 0.11 tons

Recovered

product, Qrec

= 60 * HAP^{con} * Mw_{hap}

= 19.33 lb/hr

CAPITAL COSTS

DIRECT COSTS

Purchased equipment costs

Refrigeration

Capital Cost, RCC

= \$28,919

From Table 4.8-4, corrected to

April, 1992 dollars

Condenser

Capital Cost, CCC

= \$5,836

From Figure 4.8-3, corrected

to April, 1992 dollars

Auxiliary Equipment

Cost, AEC

= \$25,000

Parameter

Cost of Cooling

= Qc_{tot} * U\$cool

Page 20 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

- verien

Review Engineer: Dr. T.P.Sinha

Liquid, T\$cool = \$1,520

Total Equipment

Cost, A = \$ (RCC + CCC + AEC + T\$cool)

= \$61,275

Instrumentation

= 0.10 * A Cost, I

= \$6,128

Sales Taxes, S = 0.05 A

= \$3,064

Freight, F = 0.05 * A

= \$3,064

Purchased

Equipment

Costs, B

= \$ (A + I + S + F)= \$ 73,530

Direct Installation Costs

Foundation and = 0.08B Supports = \$5,882

Handling and

Erection = 0.14B

= \$10,294

Electrical

= \$5,882

Piping = 0.02B

= \$1,471

Insulation for = 0.10B

ductwork = \$7,353

Painting = 0.01B

= \$735

Page 21 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

1.000

Direct

Installation

Costs, C

= (Foundation and Supports + Handling and

Erection + Electrical_+ Piping +

Insulation + Painting)

= \$31,617

Site Preparation,

= \$0

Building Cost,

E

= \$0

TOTAL DIRECT

COSTS

= \$ (B + C + D + E)

= \$105,147

INDIRECT COSTS (INSTALLATION)

Engineering = 0.10 B

= \$7,353

Construction = 0.05 B

and field expense = \$3,677

Contractor Fees = 0.10 B

= \$7,353

= 0.02 B Start-Up

= \$1,470

Performance Test = 0.01 B

= \$735

Contingencies = 0.03 B

= \$2,205

TOTAL INDIRECT

COSTS

= (Engineering + Construction + Contractor Fees

+ Start-Up + Performance Test +

Contingencies) costs

= \$ 22,793

Page 22 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

TOTAL CAPITAL INVESTMENT (TCI)

= (TOTAL DIRECT COSTS

+ TOTAL INDIRECT COSTS)

= \$(105,147 + 22,793)

= \$ 127,940

DIRECT ANNUAL COSTS

System Pressure

Drop, P_{sys}

= 5 inches

Parameter

Fan power

requirement, Fp

= 23 kwh/yr

1.81E-04*Qea*P*HRS

Refrigeration power

requirement, Rp

= 1588.9 kwh/yr

H_{load}*HRS*2.9E-04

kwh/btu/Er

Coolant pumping

requirement, Pp

= 245.3 kwh/y

[2.52 E-04 * Qcool/60/Sg

* H *Sg/7.48/n] * HRS

*0.748

From Table 4.6-8 of HAP

manual

Annual

electricity cost

= \$110

U\$elec * (Fp + Rp + Pp)

Cost of

Refrigerant

= \$0

Operating costs

(a) Operating labor

costs

= \$4,800

[(0.5 hr/shift)/

(8 hr/shift)]

*(HRS) * (\$hourly rate)

(b) Supervisory

Costs

= \$720

0.15 * (Operating labor

Operating costs = \$(4,800 + 720)

= \$ 5,520

Page 23 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Maintenance cost

(a) Maintenance

labor costs = \$4,800

[(0.5 hr/shift)/(8 hr/shift)]

*(HRS) * (\$hourly rate)

(b) Maintenace

materials

= \$4,800

1.0 * (Maintenance labor

costs)

1.00

Maintenance costs = \$(4,800 + 4,800)

= \$ 9,600

Disposal of

recovered HAP

= \$208

V_{hap} * ER * 2000 *RE

TOTAL DIRECT

ANNUAL COSTS

= (Electricity + Refrigerant + Operating + Maintenance + Disposal of recovered HAP) Costs

= \$15,438

INDIRECT ANNUAL COSTS

Overhead

= 0.60 * (Operating + Maintenance)

= \$9,072

Property Tax

= 1 percent of TCI

= \$1,279

Insurance

= 1 percent of TCI

= \$1,279

Administrative

= 1 percent of TCI

= \$1,279

Capital Recovery

= CRF * TCI

Capital recovery cost factor of life = 0.1627

= \$0.1627*127,940, is based on 10% interest

= \$20,822

rate and 10 years

Total Indirect

costs

= (Overhead + Property Tax + Insurance +

Administrative + Capital Recovery) Costs

= \$33,731

Page 24 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha

TOTAL ANNUAL

COSTS

= TOTAL INDIRECT ANNUAL COSTS

+ TOTAL DIRECT ANNUAL COSTS

= \$(33,731 + 15,438)

= \$ 49,169

2.B Absorption Control Technology

Average flow

rate, Q_{avg}

= 10 scfm

Maximum flow

rate, Qe

= 10 scfm

Temperature, T_e

 $= 77^{\circ} F$

= VOC

HAP concentration,

HAPe

= 185034 ppmv

Pressure, Pe

= 760 mm Hg

Removal

efficiency, RE

= 58.8%

Mol.wt. of emission

stream, Mwe = 70.87 lb/lb-mol

Solvent used

= Water

Slope of equilibrium

curve, m

= 2.64

from Perry's Handbook

Figure 14-14

Mol. Wt. of

solvent, Mw_{sol}

= 18 lb/lb-mol

Disposal cost of

solvent, Dsc

= \$266/1,000 gals

Schmidt # in

gas,

Scg

= 1.24

Page 25 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Schmidt	#	in
liquid,		Scl

= 804

 $U_1/(P_1*D_1)$

Solvent density,

D1

 $= 62.18 \text{ lb/ft}^3$

Solvent

Viscosity, U₁

= 0.815 cp

Weast Pg. F-42

Absorption

factor, AF

= 1.6

from HAP manual example case

* * * Z = * * Z = * Z

Packing

constant, A

= 28

Packing

constant, e = 0.74

Fraction of

Flooding V., f

= 0.6

Packing

constant, b = 3.82

Packing

constant, c

= 0.41

Packing

constant, d

= 0.45

Packing

Packing

constant, Y = 0.0125

constant, s

Packing

= 0.22

constant, g

= 11.13

Packing

constant, r = 0.00295

Page 26 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Bed type

= Single

Packing material

cost, P_{cost}

 $= $12.75/ft^3$

Hours/yr

= 2560

Electrical cost

= \$0.059/kwh

Water cost

= \$0.20/1,000 gals

Operating labor

cost

= \$30/hr

Maintenance labor

= \$30/hr

CALCULATIONS

Gas stream

flow rate, Gmol = 1.55 lb-mol/hr 0.155*Qe

Liquid flow

rate, L_{mol}

= 6.55 lb-mol/hr

AF*m*Gmol

Liquid flow

rate, L_{gal}

= 0.24 gal/min [Lmol*MWsol*(1/Dl)*7.48]/60

Solvent flow

rate, L

= 118 lb/hr

Mwsol * Lmol

- WE STONE

Gas stream flow rate, G

= 109.85 lb/hr

Mwe * Gmol

Density of Dg

gas,

 $= 0.181 \text{ lb/ft}^3$

P*M/(R*T)

Abscissa, ABS

= 0.058

= 0.14

Read from Figure 4.7-2

 $L/G * (D_q/D_1)^2$

Gas flow at

flooding, Gaf

Ordinate, ORD

= 0.874 lb/hr [ORD * Dg *Dl *Gc / $((a/e^3) * (Ul^{0.2}))$] 0.5

Page 27 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Gas flow, Ga

= 0.524 lb/hr

f * Gaf

Area of

column, Acol = 0.06 ft^2

G/(3,600 * Ga)

Diameter of column

= 1.00 ft

1.13 *Acol^{0.5}

Gas transfer

units, Nog

= 2

Equation 4.7-13,

HAP Manual

Liquid flow rate,

T. "

= $2025 lb/hr-ft^2$

L/Acol

Ht of gas transfer

unit, Hg

= 3.048 ft

 $[b * (3600 * Ga)^{c} /$

(L"d] *Scg

Ht of Liq transfer

unit, Hl

= 1.63 ft

Y * (L"/Ul") * Scl 0.5

Ht of transfer

unit, Hog

= 4.07 ft

Hg + (1/AF) * Hl

Column Height,

Htcol = 8.1 ft

Nog * Hog

Total column

height, Httot = 10.4 ft

HTcol + 2 + 0.25 * Dcol

Volume of packing

material, Vpack

 $= 6.4 \text{ ft}^3$

Pressure drop

through

column,

 $= 2.74 \text{ lb/ft}^2\text{-ft}$

Total pressure

drop, Ptot

= 4.28 in H_2O Pa * HTcol/5.2

Page 28 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha

CAPITAL COSTS

DIRECT COSTS

Purchased equipment costs

Absorber Tower

Capital Cost, RCC = \$4,967

From Figure 4.7-4, corrected

to April, 1992 dollars

Auxiliary Equipment

Cost,

AEC

= \$25,000

Parameter

Packing material,

= \$86

Vpack * Pcost, corrected to April, 1992 dollars

Total Equipment

Cost, A

= \$ (RCC + AEC + PM)

= \$30,053

Instrumentation,

= 0.10 * A

= \$3,005

Sales Taxes, S

= 0.05 A= \$1,503

Freight, F

= 0.05 * A

= \$1,503

Purchas Equipment B

= \$ (A + I + S + F)

= \$ 36,064

Direct Installation Costs

Foundation and

= 0.012 B

Supports

= \$4,328

Handling and

Erection

= 0.4 B

= \$14,425

Page 29 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Electrical = 0.01 B

= \$361

Piping , = 0.03 B

= \$10,819

Insulation for = 0.01 Bductwork = \$361

Painting = 0.01B

= \$361

Direct

Installation = (Foundation and Supports + Handling and Costs, C Erection + Electrical + Piping + Insulation +

Painting) Costs

= \$30,654

Site

Preparation, D = \$0

Building Cost, E = \$0

TOTAL DIRECT

COSTS = \$ (B + C + D + E)

= \$66,718

INDIRECT COSTS (INSTALLATION)

Engineering = 0.10 B

= \$3,606

Construction = 0.10 B= \$3,606 and field expense

Contractor Fees = 0.10 B

= \$3,606

Start-Up = 0.01 B

= \$361

Performance Test = 0.01 B

= \$361

Page 30 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Contingencies

= 0.03 B= \$1,082

TOTAL INDIRECT

COSTS

= (Engineering + Construction + Contractor Fees

+ Start-Up + Performance Test +

Contingencies) costs

= \$ 12,622

TOTAL CAPITAL

= (TOTAL DIRECT COSTS

INVESTMENT (TCI)

+ TOTAL INDIRECT COSTS)

= \$(66,718 + 12,622)

= \$ 79,340

DIRECT ANNUAL COSTS

Actual em. str.

flow rate, Qea = 10 acfm

Annual electricity

requirement, Fp

= 20 kwh/yr

Annual electricity

cost, R_p

= \$1

Fp * U\$Elec

Annual solvent

requirement, Asr

= 36,293 gallons

Annual solvent

cost, ASC

= \$7

ASR * Pcw * 1/1000

Operating costs

(a) Operating labor

costs

= \$4,800

[(0.5 hr/shift)/

(8 hr/shift)] *(HRS)*(\$hourly rate)

(b) Supervisory

Costs

= \$720

0.15*(Operating labor costs)

Operating costs

= \$(4,800 + 720)

= \$ 5,520

Page 31 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

Maintenance cost

(a) Maintenance

labor costs

= \$4,800

[(0.5 hr/shift)/(8 hr/shift)]

1.00

*(HRS) *(\$hourly rate)

(b) Maintenace

materials

= \$4,800

1.0*(Maintenance labor costs)

Maintenance costs

= \$(4,800 + 4,800)

= \$ 9,600

Disposal of

solvent

= \$9,654

ASR * Dsc

TOTAL DIRECT

ANNUAL COSTS

= (Electricity + solvent + operating + Maintenance + Disposal of solvent) Costs

= \$24,782

INDIRECT ANNUAL COSTS

Overhead

= 0.60 * (Operating + Maintenance)

= \$9,072

Property Tax

= 1 percent of TCI

= \$793

Insurance

= 1 percent of TCI

= \$793

Administrative

= 2 percent of TCI

= \$1,587

Capital Recovery

= CRF * TCI Capital recovery cost factor = \$79,340*0.1627 is based on 10% interest rate = \$12,912 and 10 years of life = 0.1627

Total Indirect

costs

= (Overhead + Property Tax + Insurance +

Administrative + Capital Recovery) Costs

= \$25,158

Page 32 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

....

TOTAL ANNUAL COSTS

= TOTAL INDIRECT ANNUAL COSTS

+ TOTAL DIRECT ANNUAL COSTS

= \$(25,158 + 24,782)

= \$ 49,940

Summary of Economic Feasibility Analysis

1. CONDENSER

MODULE	TOTAL VOC EMISSIONS (TONS/YR)	RACT CTG CAPITAL COST	RACT CTG ANNUAL COST	ANNUAL COST/TON VOC CONTROLLED	ANNUAL INCREMENTAL COST/TON VOC CONTROLLED
A' Uncont. Prop.RACT CTG RACT *Increm.Red	4.04 2.71 1.85 0.86	\$283,498	\$81,909	\$37,401	\$95,243
B Uncont. Prop.RACT CTG RACT *Increm.Red	2.83 2.07 1.44 0.63	\$283,498	\$81,909	\$58,927	\$130,014
C Uncont. Prop.RACT CTG RACT *Increm.Red	3.43 2.31 1.57 0.74	\$283,498	\$81,909	\$44,037	\$110,688
D Uncont. Prop.RACT CTG RACT *Increm.Red	5.65 3.20 2.08 1.12	\$283,498	\$81,909	\$22,944	\$73,133

Page 33 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072

Review Engineer: Dr. T.P.Sinha

E Uncont. Prop.RACT CTG RACT *Increm.Red	5.24 3.04 , 1.99 1.05	\$127,940	\$49,169	\$39,366	\$46,828
F Uncont. Prop.RACT CTG RACT *Increm.Red	5.24 3.04 1.99 1.05	\$127,940	\$49,169	\$39,366	\$46,828
30 Gal-A Uncont. Prop.RACT CTG RACT *Increm.Red	0.49 0.42 0.22 0.20	\$127,940	\$49,169	\$182,107	\$245,845
30 Gal-B Uncont. Prop.RACT CTG RACT *Increm.Red	0.45 0.38 0.19 0.19	\$127,940	\$49,169	\$189,112	\$258,784
C-Wing Uncont. Prop.RACT CTG RACT *Increm.Red	1.94 1.42 0.88 0.54	\$127,940	\$49,169	\$46,386	\$91,053
TOTAL Uncont. Prop.RACT CTG RACT *Increm.Red	29.3 18.6 12.2 6.38	\$1,773,692	\$573,481	\$33,537	\$89,887

. ** : ***

Page 34 of 35 Supplement to original submittal to EPA for SIP change

Eli Lilly and Company Indianapolis, Indiana

CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha

. e.c. : 122

2. Absorber

MODULE	TOTAL VOC EMISSIONS (TONS/YR)	RACT CTG CAPITAL COST	RACT CTG ANNUAL COST	ANNUAL COST/TON VOC CONTROLLED	ANNUAL INCREMENTAL COST/TON VOC CONTROLLED
A Uncont. Prop.RACT Aft. Absrb. *Increm.Red	4.04 2.71 2.26 0.45	\$276,020	\$89,816	\$50,458	\$199,591
B Uncont. Prop.RACT Aft. Absrb. *Increm.Red	2.83 2.07 1.77 0.30	\$276,020	\$89,816	\$86,362	\$299,387
C Uncont. Prop.RACT Aft. Absrb. *Increm.Red	3.43 2.31 2.01 0.30	\$276,020	\$89,816	\$63,251	\$299,387
D Uncont. Prop.RACT Aft. Absrb. *Increm.Red	5.65 3.20 2.93 0.27	\$276,020	\$89,816	\$33,021	\$332,652
E Uncont. Prop.RACT Aft. Absrb. *Increm.Red	5.24 3.04 2.76 0.28	\$79,340	\$49,940	\$20,137	\$178,357